Copied to
clipboard

G = C23.38D20order 320 = 26·5

9th non-split extension by C23 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.38D20, C22⋊C89D5, C406C48C2, (C2×C20).44D4, (C2×C4).33D20, (C2×C8).109D10, C207D4.2C2, D205C410C2, C10.8(C2×SD16), (C2×C10).14SD16, (C22×C4).85D10, (C22×C10).55D4, C20.282(C4○D4), C2.14(C8⋊D10), C10.11(C8⋊C22), (C2×C40).120C22, (C2×C20).745C23, (C2×D20).12C22, C22.108(C2×D20), C22.3(C40⋊C2), C51(C23.46D4), C4.106(D42D5), C4⋊Dic5.270C22, (C22×C20).52C22, C10.17(C22.D4), C2.13(C22.D20), (C2×C4⋊Dic5)⋊5C2, (C5×C22⋊C8)⋊11C2, C2.11(C2×C40⋊C2), (C2×C10).128(C2×D4), (C2×C4).690(C22×D5), SmallGroup(320,362)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C23.38D20
C1C5C10C20C2×C20C2×D20C207D4 — C23.38D20
C5C10C2×C20 — C23.38D20
C1C22C22×C4C22⋊C8

Generators and relations for C23.38D20
 G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=cb=bc, dad-1=ab=ba, ac=ca, ae=ea, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd19 >

Subgroups: 542 in 114 conjugacy classes, 43 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, C4.Q8, C2×C4⋊C4, C4⋊D4, C40, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C23.46D4, C4⋊Dic5, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C2×C40, C2×D20, C22×Dic5, C2×C5⋊D4, C22×C20, C406C4, D205C4, C5×C22⋊C8, C2×C4⋊Dic5, C207D4, C23.38D20
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C22.D4, C2×SD16, C8⋊C22, D20, C22×D5, C23.46D4, C40⋊C2, C2×D20, D42D5, C22.D20, C2×C40⋊C2, C8⋊D10, C23.38D20

Smallest permutation representation of C23.38D20
On 160 points
Generators in S160
(1 127)(2 82)(3 129)(4 84)(5 131)(6 86)(7 133)(8 88)(9 135)(10 90)(11 137)(12 92)(13 139)(14 94)(15 141)(16 96)(17 143)(18 98)(19 145)(20 100)(21 147)(22 102)(23 149)(24 104)(25 151)(26 106)(27 153)(28 108)(29 155)(30 110)(31 157)(32 112)(33 159)(34 114)(35 121)(36 116)(37 123)(38 118)(39 125)(40 120)(41 122)(42 117)(43 124)(44 119)(45 126)(46 81)(47 128)(48 83)(49 130)(50 85)(51 132)(52 87)(53 134)(54 89)(55 136)(56 91)(57 138)(58 93)(59 140)(60 95)(61 142)(62 97)(63 144)(64 99)(65 146)(66 101)(67 148)(68 103)(69 150)(70 105)(71 152)(72 107)(73 154)(74 109)(75 156)(76 111)(77 158)(78 113)(79 160)(80 115)
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 61)(17 62)(18 63)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 73)(29 74)(30 75)(31 76)(32 77)(33 78)(34 79)(35 80)(36 41)(37 42)(38 43)(39 44)(40 45)(81 127)(82 128)(83 129)(84 130)(85 131)(86 132)(87 133)(88 134)(89 135)(90 136)(91 137)(92 138)(93 139)(94 140)(95 141)(96 142)(97 143)(98 144)(99 145)(100 146)(101 147)(102 148)(103 149)(104 150)(105 151)(106 152)(107 153)(108 154)(109 155)(110 156)(111 157)(112 158)(113 159)(114 160)(115 121)(116 122)(117 123)(118 124)(119 125)(120 126)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 65 66 40)(2 39 67 64)(3 63 68 38)(4 37 69 62)(5 61 70 36)(6 35 71 60)(7 59 72 34)(8 33 73 58)(9 57 74 32)(10 31 75 56)(11 55 76 30)(12 29 77 54)(13 53 78 28)(14 27 79 52)(15 51 80 26)(16 25 41 50)(17 49 42 24)(18 23 43 48)(19 47 44 22)(20 21 45 46)(81 100 147 126)(82 125 148 99)(83 98 149 124)(84 123 150 97)(85 96 151 122)(86 121 152 95)(87 94 153 160)(88 159 154 93)(89 92 155 158)(90 157 156 91)(101 120 127 146)(102 145 128 119)(103 118 129 144)(104 143 130 117)(105 116 131 142)(106 141 132 115)(107 114 133 140)(108 139 134 113)(109 112 135 138)(110 137 136 111)

G:=sub<Sym(160)| (1,127)(2,82)(3,129)(4,84)(5,131)(6,86)(7,133)(8,88)(9,135)(10,90)(11,137)(12,92)(13,139)(14,94)(15,141)(16,96)(17,143)(18,98)(19,145)(20,100)(21,147)(22,102)(23,149)(24,104)(25,151)(26,106)(27,153)(28,108)(29,155)(30,110)(31,157)(32,112)(33,159)(34,114)(35,121)(36,116)(37,123)(38,118)(39,125)(40,120)(41,122)(42,117)(43,124)(44,119)(45,126)(46,81)(47,128)(48,83)(49,130)(50,85)(51,132)(52,87)(53,134)(54,89)(55,136)(56,91)(57,138)(58,93)(59,140)(60,95)(61,142)(62,97)(63,144)(64,99)(65,146)(66,101)(67,148)(68,103)(69,150)(70,105)(71,152)(72,107)(73,154)(74,109)(75,156)(76,111)(77,158)(78,113)(79,160)(80,115), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,41)(37,42)(38,43)(39,44)(40,45)(81,127)(82,128)(83,129)(84,130)(85,131)(86,132)(87,133)(88,134)(89,135)(90,136)(91,137)(92,138)(93,139)(94,140)(95,141)(96,142)(97,143)(98,144)(99,145)(100,146)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(113,159)(114,160)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,65,66,40)(2,39,67,64)(3,63,68,38)(4,37,69,62)(5,61,70,36)(6,35,71,60)(7,59,72,34)(8,33,73,58)(9,57,74,32)(10,31,75,56)(11,55,76,30)(12,29,77,54)(13,53,78,28)(14,27,79,52)(15,51,80,26)(16,25,41,50)(17,49,42,24)(18,23,43,48)(19,47,44,22)(20,21,45,46)(81,100,147,126)(82,125,148,99)(83,98,149,124)(84,123,150,97)(85,96,151,122)(86,121,152,95)(87,94,153,160)(88,159,154,93)(89,92,155,158)(90,157,156,91)(101,120,127,146)(102,145,128,119)(103,118,129,144)(104,143,130,117)(105,116,131,142)(106,141,132,115)(107,114,133,140)(108,139,134,113)(109,112,135,138)(110,137,136,111)>;

G:=Group( (1,127)(2,82)(3,129)(4,84)(5,131)(6,86)(7,133)(8,88)(9,135)(10,90)(11,137)(12,92)(13,139)(14,94)(15,141)(16,96)(17,143)(18,98)(19,145)(20,100)(21,147)(22,102)(23,149)(24,104)(25,151)(26,106)(27,153)(28,108)(29,155)(30,110)(31,157)(32,112)(33,159)(34,114)(35,121)(36,116)(37,123)(38,118)(39,125)(40,120)(41,122)(42,117)(43,124)(44,119)(45,126)(46,81)(47,128)(48,83)(49,130)(50,85)(51,132)(52,87)(53,134)(54,89)(55,136)(56,91)(57,138)(58,93)(59,140)(60,95)(61,142)(62,97)(63,144)(64,99)(65,146)(66,101)(67,148)(68,103)(69,150)(70,105)(71,152)(72,107)(73,154)(74,109)(75,156)(76,111)(77,158)(78,113)(79,160)(80,115), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,41)(37,42)(38,43)(39,44)(40,45)(81,127)(82,128)(83,129)(84,130)(85,131)(86,132)(87,133)(88,134)(89,135)(90,136)(91,137)(92,138)(93,139)(94,140)(95,141)(96,142)(97,143)(98,144)(99,145)(100,146)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(113,159)(114,160)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,65,66,40)(2,39,67,64)(3,63,68,38)(4,37,69,62)(5,61,70,36)(6,35,71,60)(7,59,72,34)(8,33,73,58)(9,57,74,32)(10,31,75,56)(11,55,76,30)(12,29,77,54)(13,53,78,28)(14,27,79,52)(15,51,80,26)(16,25,41,50)(17,49,42,24)(18,23,43,48)(19,47,44,22)(20,21,45,46)(81,100,147,126)(82,125,148,99)(83,98,149,124)(84,123,150,97)(85,96,151,122)(86,121,152,95)(87,94,153,160)(88,159,154,93)(89,92,155,158)(90,157,156,91)(101,120,127,146)(102,145,128,119)(103,118,129,144)(104,143,130,117)(105,116,131,142)(106,141,132,115)(107,114,133,140)(108,139,134,113)(109,112,135,138)(110,137,136,111) );

G=PermutationGroup([[(1,127),(2,82),(3,129),(4,84),(5,131),(6,86),(7,133),(8,88),(9,135),(10,90),(11,137),(12,92),(13,139),(14,94),(15,141),(16,96),(17,143),(18,98),(19,145),(20,100),(21,147),(22,102),(23,149),(24,104),(25,151),(26,106),(27,153),(28,108),(29,155),(30,110),(31,157),(32,112),(33,159),(34,114),(35,121),(36,116),(37,123),(38,118),(39,125),(40,120),(41,122),(42,117),(43,124),(44,119),(45,126),(46,81),(47,128),(48,83),(49,130),(50,85),(51,132),(52,87),(53,134),(54,89),(55,136),(56,91),(57,138),(58,93),(59,140),(60,95),(61,142),(62,97),(63,144),(64,99),(65,146),(66,101),(67,148),(68,103),(69,150),(70,105),(71,152),(72,107),(73,154),(74,109),(75,156),(76,111),(77,158),(78,113),(79,160),(80,115)], [(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,61),(17,62),(18,63),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,73),(29,74),(30,75),(31,76),(32,77),(33,78),(34,79),(35,80),(36,41),(37,42),(38,43),(39,44),(40,45),(81,127),(82,128),(83,129),(84,130),(85,131),(86,132),(87,133),(88,134),(89,135),(90,136),(91,137),(92,138),(93,139),(94,140),(95,141),(96,142),(97,143),(98,144),(99,145),(100,146),(101,147),(102,148),(103,149),(104,150),(105,151),(106,152),(107,153),(108,154),(109,155),(110,156),(111,157),(112,158),(113,159),(114,160),(115,121),(116,122),(117,123),(118,124),(119,125),(120,126)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,65,66,40),(2,39,67,64),(3,63,68,38),(4,37,69,62),(5,61,70,36),(6,35,71,60),(7,59,72,34),(8,33,73,58),(9,57,74,32),(10,31,75,56),(11,55,76,30),(12,29,77,54),(13,53,78,28),(14,27,79,52),(15,51,80,26),(16,25,41,50),(17,49,42,24),(18,23,43,48),(19,47,44,22),(20,21,45,46),(81,100,147,126),(82,125,148,99),(83,98,149,124),(84,123,150,97),(85,96,151,122),(86,121,152,95),(87,94,153,160),(88,159,154,93),(89,92,155,158),(90,157,156,91),(101,120,127,146),(102,145,128,119),(103,118,129,144),(104,143,130,117),(105,116,131,142),(106,141,132,115),(107,114,133,140),(108,139,134,113),(109,112,135,138),(110,137,136,111)]])

59 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222224444444455888810···101010101020···202020202040···40
size1111224022420202020402244442···244442···244444···4

59 irreducible representations

dim1111112222222222444
type++++++++++++++-+
imageC1C2C2C2C2C2D4D4D5C4○D4SD16D10D10D20D20C40⋊C2C8⋊C22D42D5C8⋊D10
kernelC23.38D20C406C4D205C4C5×C22⋊C8C2×C4⋊Dic5C207D4C2×C20C22×C10C22⋊C8C20C2×C10C2×C8C22×C4C2×C4C23C22C10C4C2
# reps12211111244424416144

Matrix representation of C23.38D20 in GL4(𝔽41) generated by

40000
04000
00400
0051
,
1000
0100
00400
00040
,
40000
04000
0010
0001
,
131400
272900
003221
0009
,
291600
141200
00320
00032
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,5,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[13,27,0,0,14,29,0,0,0,0,32,0,0,0,21,9],[29,14,0,0,16,12,0,0,0,0,32,0,0,0,0,32] >;

C23.38D20 in GAP, Magma, Sage, TeX

C_2^3._{38}D_{20}
% in TeX

G:=Group("C2^3.38D20");
// GroupNames label

G:=SmallGroup(320,362);
// by ID

G=gap.SmallGroup(320,362);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,254,219,142,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=c*b=b*c,d*a*d^-1=a*b=b*a,a*c=c*a,a*e=e*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^19>;
// generators/relations

׿
×
𝔽